Problem: The sum of two numbers is 206. If the larger number is 42 more than the smaller, what are the numbers?

in #math8 years ago (edited)

In my previous post, we learned how to solve System of Linear Equation in two variables by Subtstitution Method.
https://steemit.com/math/@fabio2614/solving-sytem-of-linear-equation-in-two-variables-by-substitution-method

Today's post talks on how to solve System of Linear Equation in two variables by Elimination Method

Abstraction

As we all know most problems that we encounter in life involve more than one variable.
In Algebra we put the relationships between variables in terms of equations so that we may be able to find values for the variables that would make the equations true statements.

These values are what we called solutions to the problem and we will learn how to determine those - though there are actually many ways in finding those solutions.

This time, we are going to find the solution to the problem by
IMG_20180124_192943.jpg

How it is applied?
In this method , we eliminate one of the variables either by multiplying one equation or both by a non-zero numbers so that the variable we want to eliminate will have the same numerical coefficient.

Skills needed
*knowledge in addition property of equality.
It states that:

Adding two similar terms with different signs will be equal to zero - thus obtaining one equation in one unknown.

Application to real life situation

Problem: The sum of two numbers is 206. If the larger number is 42 more than the smaller, what are the numbers?

Recall the standard form of a Linear Equation in Two Variables
IMG_20180124_201252.jpg

Let's start!
We will use x and y to represent the two numbers - though we can use any variables to represent the unknown.

IMG_20180124_195717.jpg
Out from our representation, we can now have the two equations.
IMG_20180124_203432.jpg

Note:
make sure to transform each equations to standard form.

Now add the two equations
IMG_20180124_220123.jpg

To find the value of y substitute 82 for x in either of the given equation.

IMG_20180124_220957.jpg

We now find the following value
x= 82
y= 124
Recall that we
Let x = be the smaller number
y = be the larger number

Therefore the two numbers are 82 and 124

So problem solved!

Have a nice day steemians!

Sort:  

murag kabaw man ko anah ouh haha

kabalo jud ka dai hahaha

ang2x man maam hahaha

tudlo gud nimu haha

bryt baya tag kaliwat ba hahaha

Solve for x, find x, ingon nk move on nata. Ka remember n noon...:-)

ayaw lang dibdiba hahaha

Haha... Happy sunday!

This post has received a 18.44 % upvote from @aksdwi thanks to: @fabio2614.

Alternatively and easier to calculate in your head. Divide the number by 2 = 103 and then take half of the diff away ie 21 = 82 to get one of the numbers and add half of the difference to the 103 to get the other number ie 21 + 103 = 124